## Exercise 2.5.3

Solve Laplace's equation *outside* a circular disk  $(r \ge a)$  subject to the boundary condition [*Hint*: In polar coordinates,

$$\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

it is known that if  $u(r,\theta) = \phi(\theta)G(r)$ , then  $\frac{r}{G}\frac{d}{dr}\left(r\frac{dG}{dr}\right) = -\frac{1}{\phi}\frac{d^2\phi}{d\theta^2}$ .]:

(a)  $u(a, \theta) = \ln 2 + 4 \cos 3\theta$ 

**(b)** 
$$u(a,\theta) = f(\theta)$$

You may assume that  $u(r, \theta)$  remains finite as  $r \to \infty$ .

## Solution

Because the boundary condition of the Laplace equation is prescribed on a circle, the method of separation of variables can be applied. Assume a product solution of the form  $u(r, \theta) = R(r)\Theta(\theta)$  and substitute it into the PDE.

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = 0 \quad \rightarrow \quad \frac{1}{r}\frac{\partial}{\partial r}\left[r\frac{\partial}{\partial r}[R(r)\Theta(\theta)]\right] + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}[R(r)\Theta(\theta)] = 0$$

Proceed to separate variables.

$$\frac{\Theta}{r}\frac{d}{dr}\left(r\frac{dR}{dr}\right) + \frac{R}{r^2}\frac{d^2\Theta}{d\theta^2} = 0$$

Multiply both sides by  $r^2/[R(r)\Theta(\theta)].$ 

$$\frac{r}{R}\frac{d}{dr}\left(r\frac{dR}{dr}\right) + \frac{1}{\Theta}\frac{d^2\Theta}{d\theta^2} = 0$$

Bring the second term to the right side. (The final answer will be the same regardless which side the minus sign is on.)

$$\underbrace{\frac{r}{R}\frac{d}{dr}\left(r\frac{dR}{dr}\right)}_{\text{function of }r} = \underbrace{-\frac{1}{\Theta}\frac{d^2\Theta}{d\theta^2}}_{\text{function of }\theta}$$

The only way a function of r can be equal to a function of  $\theta$  is if both are equal to a constant  $\lambda$ .

$$\frac{r}{R}\frac{d}{dr}\left(r\frac{dR}{dr}\right) = -\frac{1}{\Theta}\frac{d^2\Theta}{d\theta^2} = \lambda$$

As a result of applying the method of separation of variables, the Laplace equation has been reduced to two ODEs—one in r and one in  $\theta$ .

$$\frac{r}{R}\frac{d}{dr}\left(r\frac{dR}{dr}\right) = \lambda$$
$$-\frac{1}{\Theta}\frac{d^{2}\Theta}{d\theta^{2}} = \lambda$$

Periodic boundary conditions are assumed for  $\Theta$ , since the solution and its slope in the  $\theta$ -direction are expected to be the same at  $\theta = 0$  and  $\theta = 2\pi$ .

$$\Theta(0) = \Theta(2\pi)$$
$$\frac{d\Theta}{d\theta}(0) = \frac{d\Theta}{d\theta}(2\pi)$$

Values of  $\lambda$  for which nontrivial solutions of the preceding equations exist are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that  $\lambda$  is positive:  $\lambda = \alpha^2$ . The ODE for  $\Theta$  becomes

$$\frac{d^2\Theta}{d\theta^2} = -\alpha^2\Theta.$$

The general solution is written in terms of sine and cosine.

$$\Theta(\theta) = C_1 \cos \alpha \theta + C_2 \sin \alpha \theta$$

Take the derivative of it.

$$\Theta'(\theta) = \alpha(-C_1 \sin \alpha \theta + C_2 \cos \alpha \theta)$$

Apply the boundary conditions to obtain a system of equations involving  $C_1$  and  $C_2$ .

$$\Theta(0) = C_1 = C_1 \cos 2\pi\alpha + C_2 \sin 2\pi\alpha = \Theta(2\pi)$$
  

$$\Theta'(0) = \alpha(C_2) = \alpha(-C_1 \sin 2\pi\alpha + C_2 \cos 2\pi\alpha) = \Theta'(2\pi)$$
  

$$\begin{cases} C_1 = C_1 \cos 2\pi\alpha + C_2 \sin 2\pi\alpha \\ C_2 = -C_1 \sin 2\pi\alpha + C_2 \cos 2\pi\alpha \\ C_1(1 - \cos 2\pi\alpha) = C_2 \sin 2\pi\alpha \\ C_2(1 - \cos 2\pi\alpha) = -C_1 \sin 2\pi\alpha \end{cases}$$

These equations are satisfied if  $\alpha = n$ , where n = 1, 2, ... The positive eigenvalues are thus  $\lambda = n^2$ , and the eigenfunctions associated with them are

$$\Theta(\theta) = C_1 \cos \alpha \theta + C_2 \sin \alpha \theta \quad \to \quad \Theta_n(\theta) = C_1 \cos n\theta + C_2 \sin n\theta.$$

With this formula for  $\lambda$ , the ODE for R becomes

$$\frac{r}{R}\frac{d}{dr}\left(r\frac{dR}{dr}\right) = n^2$$
$$r^2\frac{d^2R}{dr^2} + r\frac{dR}{dr} - n^2R = 0$$

This ODE is equidimensional, so the general solution is of the form  $R(r) = r^k$ . Find its derivatives

$$R(r) = r^k \quad \rightarrow \quad \frac{dR}{dr} = kr^{k-1} \quad \rightarrow \quad \frac{d^2R}{dr^2} = k(k-1)r^{k-2}$$

and substitute them into the equation.

$$r^{2}k(k-1)r^{k-2} + rkr^{k-1} - n^{2}r^{k} = 0$$

www.stemjock.com

$$k(k-1)r^{k} + kr^{k} - n^{2}r^{k} = 0$$
$$k(k-1) + k - n^{2} = 0$$
$$k^{2} - n^{2} = 0$$
$$k = \pm n$$

Consequently,

Divide both sides by  $r^k$ .

$$R(r) = C_3 r^{-n} + C_4 r^n.$$

Since u remains finite as  $r \to \infty$ , we require that  $C_4 = 0$ .

$$R(r) = \frac{C_3}{r^n}$$

Suppose secondly that  $\lambda$  is zero:  $\lambda = 0$ . The ODE for  $\Theta$  becomes

$$\Theta'' = 0.$$

Integrate both sides with respect to  $\theta$ .

$$\Theta' = C_5$$

Integrate both sides with respect to  $\theta$  once more.

$$\Theta(\theta) = C_5\theta + C_6$$

Apply the boundary conditions to obtain a system of equations involving  $C_5$  and  $C_6$ .

$$\Theta(0) = C_6 = 2\pi C_5 + C_6 = \Theta(2\pi)$$
  
 $\Theta'(0) = C_5 = C_5 = \Theta'(2\pi)$ 

The first equation implies that  $C_5 = 0$  and  $C_6$  is arbitrary, and the second equation gives no information.

$$\Theta(\theta) = C_6$$

Since  $\Theta(\theta)$  is nonzero, zero is an eigenvalue; the eigenfunction associated with it is  $\Theta_0(\theta) = 1$ . Now solve the ODE for R with  $\lambda = 0$ .

$$\frac{d}{dr}\left(r\frac{dR}{dr}\right) = 0$$

Integrate both sides with respect to r.

$$r\frac{dR}{dr} = C_7$$

Divide both sides by r.

$$\frac{dR}{dr} = \frac{C_7}{r}$$

Integrate both sides with respect to r once more.

$$R(r) = C_7 \ln r + C_8$$

For u to remain finite as  $r \to \infty$ , we require that  $C_7 = 0$ .

$$R(r) = C_8$$

www.stemjock.com

Suppose thirdly that  $\lambda$  is negative:  $\lambda = -\beta^2$ . The ODE for  $\Theta$  becomes

$$\frac{d^2\Theta}{d\theta^2} = \beta^2\Theta$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$\Theta(\theta) = C_9 \cosh\beta\theta + C_{10} \sinh\beta\theta$$

Take the derivative of it.

$$\Theta'(\theta) = \beta(C_9 \sinh\beta\theta + C_{10} \cosh\beta\theta)$$

Apply the boundary conditions to obtain a system of equations involving  $C_9$  and  $C_{10}$ .

$$\Theta(0) = C_9 = C_9 \cosh 2\pi\beta + C_{10} \sinh 2\pi\beta = \Theta(2\pi)$$
  

$$\Theta'(0) = \beta(C_{10}) = \beta(C_9 \sinh 2\pi\beta + C_{10} \cosh 2\pi\beta) = \Theta'(2\pi)$$
  

$$\begin{cases} C_9 = C_9 \cosh 2\pi\beta + C_{10} \sinh 2\pi\beta \\ C_{10} = C_9 \sinh 2\pi\beta + C_{10} \cosh 2\pi\beta \\ C_{10} = C_9 \sinh 2\pi\beta + C_{10} \cosh 2\pi\beta \\ \begin{cases} C_9(1 - \cosh 2\pi\beta) = C_{10} \sinh 2\pi\beta \\ C_{10}(1 - \cosh 2\pi\beta) = C_9 \sinh 2\pi\beta \end{cases}$$

No nonzero value of  $\beta$  satisfies these equations, so  $C_9 = 0$  and  $C_{10} = 0$ . The trivial solution  $\Theta(\theta) = 0$  is obtained, so there are no negative eigenvalues. According to the principle of superposition, the general solution to the PDE for u is a linear combination of  $R(r)\Theta(\theta)$  over all the eigenvalues.

$$u(r,\theta) = A_0 + \sum_{n=1}^{\infty} \frac{1}{r^n} (A_n \cos n\theta + B_n \sin n\theta)$$

## Part (a)

Apply the boundary condition  $u(a, \theta) = \ln 2 + 4 \cos 3\theta$  to determine the coefficients,  $A_0$ ,  $A_n$ , and  $B_n$ .

$$u(a,\theta) = A_0 + \sum_{n=1}^{\infty} \frac{1}{a^n} (A_n \cos n\theta + B_n \sin n\theta) = \ln 2 + 4 \cos 3\theta$$

By inspection, we see that  $A_0 = \ln 2$ ,  $B_n = 0$ , and

$$\frac{A_n}{a^n} = \begin{cases} 0 & n \neq 3\\ 4 & n = 3 \end{cases} \rightarrow A_n = \begin{cases} 0 & n \neq 3\\ 4a^3 & n = 3 \end{cases}$$

Therefore,

$$u(r,\theta) = \ln 2 + \frac{4a^3}{r^3}\cos 3\theta.$$

## Part (b)

Apply the boundary condition  $u(a, \theta) = f(\theta)$  to determine the coefficients,  $A_0$ ,  $A_n$ , and  $B_n$ .

$$u(a,\theta) = A_0 + \sum_{n=1}^{\infty} \frac{1}{a^n} (A_n \cos n\theta + B_n \sin n\theta) = f(\theta)$$
(1)

To find  $A_0$ , integrate both sides of equation (1) with respect to  $\theta$  from 0 to  $2\pi$ .

$$\int_0^{2\pi} \left[ A_0 + \sum_{n=1}^\infty \frac{1}{a^n} (A_n \cos n\theta + B_n \sin n\theta) \right] d\theta = \int_0^{2\pi} f(\theta) \, d\theta$$

Split up the integral on the left and bring the constants in front.

$$A_0 \int_0^{2\pi} d\theta + \sum_{n=1}^\infty \frac{1}{a^n} \left( A_n \underbrace{\int_0^{2\pi} \cos n\theta \, d\theta}_{= 0} + B_n \underbrace{\int_0^{2\pi} \sin n\theta \, d\theta}_{= 0} \right) = \int_0^{2\pi} f(\theta) \, d\theta$$
$$A_0(2\pi) = \int_0^{2\pi} f(\theta) \, d\theta$$

So then

$$A_0 = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) \, d\theta.$$

To find  $A_n$ , multiply both sides of equation (1) by  $\cos m\theta$ , where m is an integer,

$$A_0 \cos m\theta + \sum_{n=1}^{\infty} \frac{1}{a^n} (A_n \cos n\theta \cos m\theta + B_n \sin n\theta \cos m\theta) = f(\theta) \cos m\theta$$

and then integrate both sides with respect to  $\theta$  from 0 to  $2\pi$ .

$$\int_0^{2\pi} \left[ A_0 \cos m\theta + \sum_{n=1}^\infty \frac{1}{a^n} (A_n \cos n\theta \cos m\theta + B_n \sin n\theta \cos m\theta) \right] d\theta = \int_0^{2\pi} f(\theta) \cos m\theta \, d\theta$$

Split up the integral on the left and bring the constants in front.

$$A_0 \underbrace{\int_0^{2\pi} \cos m\theta \, d\theta}_{= 0} + \sum_{n=1}^\infty \frac{1}{a^n} \left( A_n \int_0^{2\pi} \cos n\theta \cos m\theta \, d\theta + B_n \underbrace{\int_0^{2\pi} \sin n\theta \cos m\theta \, d\theta}_{= 0} \right)_{= 0}$$
$$= \int_0^{2\pi} f(\theta) \cos m\theta \, d\theta$$

Because the cosine functions are orthogonal, the second integral on the left is zero if  $n \neq m$ . As a result, every term in the infinite series vanishes except for the n = m one.

$$\frac{A_n}{a^n} \int_0^{2\pi} \cos^2 n\theta \, d\theta = \int_0^{2\pi} f(\theta) \cos n\theta \, d\theta$$
$$\frac{A_n}{a^n}(\pi) = \int_0^{2\pi} f(\theta) \cos n\theta \, d\theta$$

www.stemjock.com

So then

$$A_n = \frac{a^n}{\pi} \int_0^{2\pi} f(\theta) \cos n\theta \, d\theta.$$

To find  $B_n$ , multiply both sides of equation (1) by  $\sin m\theta$ , where m is an integer,

$$A_0 \sin m\theta + \sum_{n=1}^{\infty} \frac{1}{a^n} (A_n \cos n\theta \sin m\theta + B_n \sin n\theta \sin m\theta) = f(\theta) \sin m\theta$$

and then integrate both sides with respect to  $\theta$  from 0 to  $2\pi.$ 

$$\int_0^{2\pi} \left[ A_0 \sin m\theta + \sum_{n=1}^\infty \frac{1}{a^n} (A_n \cos n\theta \sin m\theta + B_n \sin n\theta \sin m\theta) \right] d\theta = \int_0^{2\pi} f(\theta) \sin m\theta \, d\theta$$

Split up the integral on the left and bring the constants in front.

$$A_0 \underbrace{\int_0^{2\pi} \sin m\theta \, d\theta}_{= 0} + \sum_{n=1}^{\infty} \frac{1}{a^n} \left( A_n \underbrace{\int_0^{2\pi} \cos n\theta \sin m\theta \, d\theta}_{= 0} + B_n \int_0^{2\pi} \sin n\theta \sin m\theta \, d\theta \right)$$
$$= \int_0^{2\pi} f(\theta) \sin m\theta \, d\theta$$

Because the sine functions are orthogonal, the third integral on the left is zero if  $n \neq m$ . As a result, every term in the infinite series vanishes except for the n = m one.

$$\frac{B_n}{a^n} \int_0^{2\pi} \sin^2 n\theta \, d\theta = \int_0^{2\pi} f(\theta) \sin n\theta \, d\theta$$
$$\frac{B_n}{a^n}(\pi) = \int_0^{2\pi} f(\theta) \sin n\theta \, d\theta$$

So then

$$B_n = \frac{a^n}{\pi} \int_0^{2\pi} f(\theta) \sin n\theta \, d\theta.$$